
Technical Note

A new numerical method to simulate the non-Fourier
heat conduction in a single-phase medium

Qing-Mei Fan, Wen-Qiang Lu *

Division of Thermal Science, Department of Physics, The Graduate School of the Chinese Academy of Sciences, P.O. Box 3908,

Beijing 100039, China

Received 2 March 2001; received in revised form 8 November 2001

Abstract

Many non-equilibrium heat conduction processes can be described by the macroscopic dual-phase lag model (DPL

model). In this paper, a numerical method, which combines the dual reciprocity boundary element method (DRBEM)

with Laplace transforms, is constructed to solve such mathematical equation. It is used to simulate the non-Fourier

phenomenon of heat conduction in a single-phase medium, then numerically predict the differences between the thermal

diffusion, the thermal wave and the non-Fourier heat conduction under different boundary conditions including pulse

for one- and two-dimensional problems. In order to check this numerical method’s reliability, the numerical solutions

are still compared with two known analytical solutions. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In practical engineering problems, since heat sources

such as lasers and microwaves with extremely short

durations, very high frequencies or quite high heat-flux

densities, are widely used, non-Fourier heat-conduction

phenomenon has been found in many mediums [1–3].

Many heat transfer researchers have attached much

importance to the potentially practical values of the

non-Fourier heat conduction in many applications, such

as rapid metal thawing and solidifying process, surface

thermal processing by laser, temperature control of su-

perconductor, laser and freezing surgery, rapid drying,

etc. Therefore, the non-Fourier heat conduction has

become one of hotspots in the field of heat transfer.

There are many physical models of non-Fourier heat

conduction [4]. For the single-phase medium, these

models can be separated into the microscopic two-step

model [5,6] and the macroscopic dual-phase lag model

[7]. The former considers that when the characteristic

time of thermal process is comparable with the phonon–

electron thermal relaxation time, the phonon–electron

interaction dominates the short time heat-transfer pro-

cess. The latter considers the lag of two macroscopic

phases: temperature gradient and heat flux. Although

the latter does not consider the microscopic reasons of

the heat-transfer process on macroscopic level, many

works have found that the two models can be expressed

by the mathematical equation with the same mathe-

matical characters under certain conditions [4,7–9].

Therefore, it is important to analyze the mathematical

equation and its solution method.

The basic formulation of the dual-phase lag model

(DPL model) in a single-phase medium is given by

Tzou’s formula [7]:

~qqþ sq
o~qq
ot

¼ �krT � kst
o

ot
rT ; ð1Þ

where~qq is the heat flux, T is the temperature and k is the

thermal conductivity. sq and st are the delay times in

establishing heat flux and temperature gradient, respec-

tively. The energy conservation equation without con-

vection and radiation can be written as follows:
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qc
oT
ot

¼ �r �~qq; ð2Þ

where q is the density and c is the specific heat. Substi-

tuting Eq. (1) into Eq. (2) and eliminating ~qq gives

oT
ot

þ sq
o2T
ot2

¼ ar2T þ ast
o

ot
r2T ; ð3Þ

where a ¼ k=ðqcÞ. By setting st ¼ 0:0, Eq. (3) reduces to
the classical thermal wave propagation problem (single-

phase lag (SPL) model), which has been studied inten-

sively. Therefore Eq. (3) can describe more general cases

than the wave equation.

The mathematical form of Eq. (3) is very complex. It

includes not only derivatives with respect to space and

time, respectively, but also the cross derivative with re-

spect to space–time as well as their higher-order deriv-

atives. In this work, a new numerical method is

developed to solve Eq. (3). The new method combines

the dual reciprocity boundary element method

(DRBEM) with Laplace transforms. It includes three

steps. The first step is to transform the governing

equation and corresponding initial and boundary con-

ditions into Laplace space by Laplace transform. In this

process the time terms can be removed from the original

equation. Secondly, the transformed equations are

solved in Laplace space by DRBEM. Finally, the solu-

tion is transformed back into physical space. A detailed

description of the new method is given below. Examples

are also presented to demonstrate the validity of the new

method, and to illiterate the characteristics of the non-

Fourier heat conduction.

2. Procedure of the new numerical method

Eq. (3) can be non-dimensionlized by using:

zq ¼
sq
l2=a

; zt ¼
st

l2=a
; b ¼ t

l2=a
; n ¼ x

l
; g ¼ y

l
;

h ¼ T � T0
Tw � T0

;

where l, Tw and T0 are the length in the x-direction, the

heated (set at x ¼ 0) and initial temperatures, respec-

tively. The dimensionless form of Eq. (3) can then be

rewritten as:

oh
ob

þ zq
o2h

ob2
¼ r2h þ zt

o

ob
r2h: ð4Þ

Taking the following Laplace transform:

�hhðn; g; kÞ ¼
Z 1

0

hðn; g; bÞe�kb db: ð5Þ

Then Eq. (4) is given as follows:

r2 �hhðn; kÞ ¼ V �hhðn; kÞ � C0; ð6Þ

where

C0 ¼ hðn; 0Þ þ zqkhðn; 0Þ þ zq
ohðn; 0Þ

ob
� ztr2hðn; 0Þ

� �
�

ð1þ kztÞ

and

V ¼ kð1þ kzqÞ
1þ kzt

ð7Þ

or

r2 �hhðn; bÞ ¼ b with b ¼ V �hh � C0: ð8Þ

The initial and boundary conditions in physical space

should also be transformed into the corresponding ones

in Laplace space.

Nomenclature

c specific heat

k thermal conductivity

l length in the x-direction

n unit outward normal to the boundary C
q temperature gradient, oh=on
�qq Laplace transformation of q; o�hh=on
�qq	 �qq	 ¼ o�hh	=on

�qq
^

�qq
^
¼ o�hh

^
=on

~qq heat flux

t time

T temperature

T0 initial temperature

Tw temperature at x ¼ 0

zq dimensionless form of sq; sq=ðl2=aÞ
zt dimensionless form of st; st=ðl2=aÞ

a thermal diffusivity

b dimensionless time, t=ðl2=aÞ
g dimensionless length in the y-direction, y=l
h dimensionless temperature, ðT � T0Þ=

ðTw � T0Þ
�hh Laplace transformation of h
�hh	 fundamental solution, ð1=2pÞ lnð1=rÞ
�hh
^

particular solution, ðr2=4Þ þ ðr3=9Þ
k Laplace transform parameter

n dimensionless length in the x-direction, x=l
q density

sq delay time in establishing heat flux

st delay time in establishing temperature gra-

dient

2816 Q.-M. Fan, W.-Q. Lu / International Journal of Heat and Mass Transfer 45 (2002) 2815–2821



Using the theory of dual reciprocity [10], Eq. (8) will

be transformed into the following pure boundary inte-

gral equation:

ci �hhi þ
Z

C
�qq	 �hhdC �

Z
C

�hh	�qqdC

¼
XNþL

j¼1

aj ci �hh
^

ij

 
þ
Z

C
�qq	 �hh

^

j dC �
Z

C

�hh	�qq
^
j dC

!
: ð9Þ

The terms �qq	, �qq
^
j and �qq in Eq. (9) are defined as �qq	 ¼

o�hh	=on, �qq
^
j ¼ o�hh

^

j=on and �qq ¼ o�hh=on, respectively, where n
is the unit outward normal to the boundary C, and

�hh	 ¼ 1

2p
ln

1

r

� 	
; �hh

^

j ¼
r2

4
þ r3

9
:

The coefficient ci can be shown to be ci ¼ c=2p (c is the

internal angle at point i). a ¼ F �1b, where each column

of F consists of fj ¼ 1þ rj, and r is the distance between

two points. N and L are the numbers of boundary nodes

and internal nodes, respectively.

After solving Eq. (8) by DRBEM, the result �hhðn; kÞ
must be inversely transformed into physical space using

Laplace inverse-transform methods [11,12]:

hiðbÞ ¼
ln 2

b

XM
j¼1

wj
�hhij ð10Þ

with

wj ¼ ð�1ÞðM=2Þþj

�
Xminðj;M=2Þ

k¼½ðjþ1Þ=2

kM=2ð2kÞ!
ððM=2Þ � kÞ!k!ðk � 1Þ!ðj� kÞ!ð2k � jÞ! ;

ð11Þ

where the Laplace transform parameter kj ¼ jðln 2=bÞ,
i ¼ 1; 2; . . . ;N is the number of boundary or internal

grids, and j ¼ 1; 2; . . . ;M is the number of items in

convergent series.

3. Validation of the new method

To demonstrate the validity of the newly developed

method, the new method is employed to solve the fol-

lowing one-dimensional problem that has an analytical

solution. The problem considered is a non-Fourier heat

conduction problem in a one-dimensional spindly slab

(�0:016 g6 0:01 and 0:06 n6 1:0) under the following

initial and boundary conditions with the top and bottom

walls kept adiabatic:

hðn; bÞ ¼ 1 ðat n ¼ 0; b > 0Þ; ð12Þ

ohðn; bÞ=on ¼ 0 ðat n ¼ 1; b > 0Þ; ð13Þ

hðn; bÞ ¼ 0; ohðn; bÞ=on ¼ 0 ðat b ¼ 0Þ: ð14Þ

First, the effect of the grid distribution is investigated.

Fig. 1 compares the two grid systems. One can see that a

denser grid distribution gives a more accurate solution

as expected. Good agreement between the numerical

solution and the analytical solutions of Tzou [7] and

Antaki [8] for thermal diffusion and thermal wave

problems are showed in Figs. 2(a) and (b), respectively.

Fig. 1. The effect of the grid distribution for one-dimensional

problem when zq ¼ 0:05.

Fig. 2. Comparison between numerical and analytical results: (a) thermal diffusion ðzq ¼ b ¼ 0:05; zt ¼ 0:05Þ; (b) thermal wave

ðzq ¼ b ¼ 0:05; zt ¼ 0:0Þ.
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The results show that this numerical method is

credible. The numerical result for the classical Fourier

heat-conduction equation (zt ¼ zq ¼ 0) is also drawn in

Fig. 2(a). As shown in Fig. 2(a), this result is accordant

with the numerical result of DPL model for

zt ¼ zq ¼ 0:05. Different numerical solutions for zt ¼ zq
under the initial conditions of zero-temperature and

zero-temperature gradient are made, and the results are

drawn in Fig. 3.

As shown in Fig. 3, no matter what the value of

zt ¼ zq 6¼ 0 is, the results can all approach to the classical

diffusion solution. Then in the following consideration,

we will take the zt ¼ zq ¼ 0:05 as thermal diffusion under

the same initial conditions.

4. Non-Fourier heat conduction for isothermal inlet

Next, consider again the one-dimensional heat con-

duction problem with the initial and boundary condi-

tions defined by Eqs. (12)–(14). This time, fix the value

of zq ¼ 0:05, but varying the value of zt. When zt ¼ 0:0
(i.e., st ¼ 0), the governing equation reduces to the

thermal wave equation, while zt 6¼ 0 corresponds to the

case of DPL model, with zq ¼ zt as a special case of pure

thermal diffusion as considered above. Typical numeri-

cal results are drawn in Fig. 4. When zt > zq (i.e.,

st > sq), which some have described as over-diffusion

heat conduction [9], it shows such a phenomenon that

the lag of heat flux in the region will be smaller than the

lag of temperature gradient. From Fig. 4, it can be seen

that the temperature distribution curve of over-diffusion

heat conduction will become smoother. However, when

zt 6¼ 0, the sharp descent of temperature distribution on

space (i.e., the thermal wave front) will not exist. The

greater zt is, the more even the temperature distribu-

tion will be. Similar results can be seen in the litera-

ture [7,8].

5. Non-Fourier heat conduction under the pulsed temper-

ature inlet condition

A pulsed temperature on the left boundary causes

different heat-conduction rules between the thermal

wave and non-Fourier cases. Considering the two-di-

mensional problem with the geometry showed in Fig. 5,

the computation domain is 0:06 n6 1:0 and 0:0 6

g6 0:5, and there are 50 boundary points and 76 inter-

nal points (Dn ¼ 0:05;Dg ¼ 0:10). The initial conditions
are zero-temperature and zero-temperature gradient. A

temperature pulse set on the left boundary has non-zero

time width.

The boundary conditions are given as:

when b 2 ½b1; b2
hðn; g; bÞ ¼ 1:0 ðat n ¼ 0:0 and g 2 ½g1; g2Þ;
ohðn; g; bÞ

on
¼ ohðn; g; bÞ

og
¼ 0:0 ðothersÞ;

8<
: ð15Þ

when b 62 ½b1; b2
hðn; g; bÞ ¼ 0:0 ðat n ¼ 0:0 and g 2 ½g1; g2Þ;
ohðn; g; bÞ

on
¼ ohðn; g; bÞ

og
¼ 0:0 ðothersÞ:

8<
: ð16Þ

Here choosing b1 ¼ 0:05, b2 ¼ 0:10, g1 ¼ 0:2 and g2 ¼
0:3, then the three-dimensional dimensionless tempera-

ture maps of the single-phase (thermal wave) and dual-

phase lag (non-Fourier) heat-conduction problems are

drawn in Fig. 6.

Comparing Fig. 6(a) with Fig. 6(b), within the pulse

heated time interval (Figs. 6(a1)–(a3) and (b1)–(b3)), the

temperature propagation images of the SPL model and

the DPL model are almost the same. However, with time

Fig. 3. Influence of different value of zt ¼ zq under the initial

field of zero-temperature and zero-temperature gradient.

Fig. 4. Dimensionless temperature distribution for different zt
under the condition of isothermal inlet ðzq ¼ 0:05;b ¼ 0:05Þ.

Fig. 5. Geometry condition for two-dimensional problem set

pulse.
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marching, their differences gradually appear because of

the effect of wave reflection and superposition in thermal

wave heat conduction. Similar to the one-dimensional

results, the temperature near the heated boundary is

higher than the pulsed temperature since the non-Fourier

heat conduction lags behind the Fourier diffusion. As

shown in Fig. 6, during time interval 0:07 < b < 0:10,
temperature near the heated wall is higher than the initial

Fig. 6. Three-dimensional figures for the two-dimensional problem with non-zero time width pulse set on the left boundary: (a)

thermal wave heat conduction (SPL model); (a1) zq ¼ 0:05; zt ¼ 0:0; b ¼ 0:05, (a2) zq ¼ 0:05; zt ¼ 0:0; b ¼ 0:07, (a3) zq ¼
0:05; zt ¼ 0:0; b ¼ 0:10, (a4) zq ¼ 0:05; zt ¼ 0:0; b ¼ 0:20, (a5) zq ¼ 0:05; zt ¼ 0:0; b ¼ 0:34, (a6) zq ¼ 0:05; zt ¼ 0:0;b ¼ 0:54; (b) non-

Fourier heat conduction (DPL model); (b1) zq ¼ 0:05; zt ¼ 0:0001; b ¼ 0:05, (b2) zq ¼ 0:05; zt ¼ 0:0001;b ¼ 0:07, (b3) zq ¼ 0:05;
zt ¼ 0:0001;b ¼ 0:10, (b4) zq ¼ 0:05; zt ¼ 0:0001;b ¼ 0:20, (b5) zq ¼ 0:05; zt ¼ 0:0001;b ¼ 0:34, (b6) zq ¼ 0:05; zt ¼ 0:0001; b ¼ 0:54.
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temperature (h ¼ 1:0). And at the same time, such phe-

nomenon only exists in the narrow space region near the

heated wall. Therefore, the delay effect only exists within

a short time interval and narrow space domain. Notice

that this space–time micro-scale effect has obvious two-

dimensional characters. The reflecting and superposing

on sideward walls and propagating forwards phenomena

of thermal wave can be observed from those Fig. 6(a).

For thermal wave heat conduction, the wave effect con-

trols the whole process, and this process shows strongly

fluctuant character. While in the case of the DPL model,

the total heat-conduction process is jointly controlled by

the wave and diffusing effect. With increasing st, the wave
effect of heat-conduction process is weakened, and the

diffusion gradually increases at the same time.

6. Conclusions

A numerical method combining the dual reciprocity

boundary element method with Laplace transforms is

used to solve the non-Fourier heat-conduction problem

Fig. 6 (continued)
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under different inlet conditions. The differences between

the thermal wave heat transfer, the non-Fourier heat

conduction and the thermal diffusion heat conduction

are numerically computed. Then the following conclu-

sions can be obtained:

1. The numerical method combining the dual reciproc-

ity boundary element method (DRBEM) with La-

place transforms is effective for solving such

mathematical equations as the DPL model including

derivatives with respect of time, space and space–time

cross as well as its higher-order cross derivative.

Agreement between the results of the numerical solu-

tion and the analytical solutions shows that this

method and its results are credible. Furthermore, this

paper reports the two-dimensional numerical results

of the non-Fourier heat-conduction problem under

different boundary conditions.

2. When zq ¼ zt ¼ 0:0, DPL model degenerates into the

classical diffusion model. When zq ¼ zt 6¼ 0:0 with

zero-temperature and zero-temperature gradient ini-

tially, the pure diffusion solution of the DPL model

can be also obtained.

3. When zq > 0 is fixed, increasing zt from zero makes

that the heat conduction law is developed from the

thermal wave heat conduction into the non-Fourier

heat conduction, then into the thermal diffusion heat

conduction, and finally into over-diffusion heat con-

duction.

4. Under the pulsed inlet condition, the space–time

micro-scale effect of non-Fourier heat conduction is

numerically predicted. This effect has obvious two-

dimensional characteristics.
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